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With the advancement of Lidar technology, bottom depth (H) of optically shallow waters (OSW) can be measured accurately with
an airborne or space-borne Lidar system (HLidar hereafter), but this data product consists of a line format, rather than the desired
charts or maps, particularly when the Lidar system is on a satellite. Meanwhile, radiometric measurements frommultiband imagers
can also be used to infer H (H imager hereafter) of OSW with variable accuracy, though a map of bottom depth can be obtained. It is
logical and advantageous to use the two data sources from collocated measurements to generate a more accurate bathymetry map of
OSW, where usually image-specific empirical algorithms are developed and applied. Here, after an overview of both the empirical
and semianalytical algorithms for the estimation of H from multiband imagers, we emphasize that the uncertainty of Himager varies
spatially, although it is straightforward to draw regressions between HLidar and radiometric data for the generation of Himager.
Further, we present a prototype system to map the confidence of Himager pixel-wise, which has been lacking until today in the
practices of passive remote sensing of bathymetry. We advocate the generation of a confidence measure in parallel with H imager,
which is important and urgent for broad user communities.

1. Introduction

The ocean depth is a geophysical property puzzling humans
for thousands of years. The answer not only satisfies curiosity
but also is important for many aspects of human activities
and scientific studies, including navigation, ecosystem man-
agement, sustainable economic development, and ocean
dynamic modeling [1]. To determine ocean bathymetry, the
ancient Greeks (circa 80BCE) used the “line sounding”
method and obtained depth measurements up to ~2000m
in the Mediterranean Sea, while James Clark Ross obtained
a depth of 4893m in the 1840s. All these measurements were
based on ship surveys; hence, it is unsurprising that the Chal-
lenger expedition (1872-1876), an oceanic voyage explicitly
targeting ocean bathymetry, obtained just 492 soundings of
the Atlantic Ocean. Only after the invention of Sonar during

World War II did great achievements occur in ocean
bathymetry or bottom topography. Still, because the ocean
bottom is covered by a thick layer of water, which is generally
opaque to electromagnetic radiation, we still know much less
about the seafloor compared to what we know about the sur-
face of the Moon or Mars [2].

Since the launch and operation of satellites, our capability
to observe and measure ocean bathymetry has significantly
improved, where sea surface altimetry has been successfully
used to indirectly infer the bathymetry [3, 4]. This approach
cannot resolve small-scale variations and can only detect
large seamounts that alter the earth’s gravitational field and
subsequently the sea surface altimetry. One direct and precise
measurement of bathymetry from airborne or space-borne
platforms is Lidar (light detection and ranging) [5], which
uses time lapses between emission and receiving of photons
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interacting with the bottom (or a target) to calculate the dis-
tance photons traveled. This time-based technique can be
used to accurately calculate the bottom depth of clear oceanic
waters up to about 40m at present [6, 7]. We commonly term
this technique as active remote sensing of bottom depth and
here useHLidar to represent the product obtained (see Table 1
for major symbols and acronyms used in this article).
Although Lidar is only feasible for relatively shallow and
clear waters, due to the significance of such regions, there
are many airborne Lidar systems specifically developed for
bathymetry [5, 8]. One extremely exciting and valuable
development is the ICESat-2 satellite system [9], which sends
out a laser at 532nm, has a vertical resolution of about 0.17m
for bathymetry, and can potentially provideHLidar for various
nearshore regions of the world [7]. This Lidar system, due to
its space-borne nature, obtains measurements of mesh-style
points (in the various lines dictated by the Lidar system and
satellite orbit), not the desired bathymetry map.

A completely different approach of the optical measure-
ment of bathymetry is based on radiative transfer, where a
shallow bottom will affect the radiance emerging from below
the sea surface. A quick and simple example is the shallow vs.
deep ends of a swimming pool that appear as different colors
to humans. Algorithms were then developed in the 1970s to
use radiometric data from multiband imagers to estimate
the bottom depth of shallow clear waters [10–12]. This
image-based remote sensing of the bottom depth (Himager
hereafter) is commonly termed as passive remote sensing.
Although such estimates of depth are not precise, a signifi-
cant advantage is that a map of H imager can be produced,
especially with the launch and operation of more advanced
sensors [1]. In recent decades, with an improved understand-
ing of radiative transfer in optically shallow waters (OSW),
more sophisticated algorithms based on radiative transfer
were developed [13–19], resulting in the creation of more
bathymetry maps from imagers [19–22]. For those algo-
rithms based on the physics of radiative transfer, a priori
depths are not required for the development of the algorithm,
and Himager can be produced as long as the input reflectance
spectrum is highly reliable and has an adequate spectral
resolution. However, since both the water and bottom prop-
erties affect the reflectance spectrum, there are still various
uncertainties in the derived Himager product from the reflec-
tance spectrum.

In view of the availability of concurrent or collocated
highly accurate satellite-based HLidar and high-spatial resolu-
tion multiband imagers, it is logical to develop schemes to
generate bathymetry maps of OSW through the fusion of
the two data sources [23, 24]. Figure 1 shows an example of
measurements captured by ICESat-2 (red dashed line) and
Landsat-8 operational land imager (OLI) over the Great
Bahama Bank, where it is desired to expand the ICESat-2
bathymetry to the entire shallow regions covered by the
Landsat-8 acquisition. As demonstrated in many studies,
when collocated measurements of both H and radiometric
properties are available, the generation of Himager through
explicit empirical regressions [25–28] or neural networks
[29–31] becomes straightforward. However, these Himager

products [25, 32] lack a representation of the confidence or
quality of the product at each pixel, although schemes to esti-
mate the impact of radiometric noise on Himager have been
developed [21, 33]. Usually, an averaged root mean square
error or mean relative error of an algorithm is provided,
but such measures of error represent the performance from
a data pool and do not mean the same error or confidence
at every pixel or location [34]. After the first demonstration
of passive remote sensing of bottom depth [10, 12], what
limited the broad-scale application of the Himager product
was not a lack of algorithms but rather the lack of a pixel-
wise confidence measure for such products. Brando et al.
[35] suggested using the closure between the measured and
modeled remote sensing reflectance to infer the quality of
H imager. However, as this closure is an index for numerical
solutions of a complex remote sensing function (see Section
2.3), a good closure does not necessarily indicate a high
confidence of the derived Himager. At present, the ability to
generate a pixel-wise measure of the quality or confidence
of H imager through theoretical modeling is lacking, despite
the necessity of such a measurement as it would vary spatially
even within clear waters.

Table 1: Major symbols and acronyms used in this article.

Symbol or
acronym

Definition Unit

a 440ð Þ Total absorption coefficient at 440 nm m-1

H Bottom depth m

HLidar Bottom depth measured by a Lidar system m

Himager Bottom depth derived from an imager m

ρtoa Top-of-atmosphere reflectance —

Rrs Remote sensing reflectance sr-1

Rmea
rs Rrs from a measurement sr-1

Rmod
rs Rrs from a model sr-1

Rref
rs Rrs in the matchup data pool sr-1

Rtar
rs Rrs from a water target sr-1

CSS Confidence score system

EBA Empirically based approach or algorithm

EEA Explicit empirical approach

ICESat-2 Ice, Cloud and land Elevation Satellite

IEA Implicit empirical approach or algorithm

IOPs Inherent optical properties

Lidar Light detection and ranging —

MBVA Multiband value algorithm

MLA Machine learning approach or algorithm

MLARrs MLA based on Rrs

MLAρtoa MLA based on ρtoa

OSW Optically shallow water

SAA Semianalytical approach or algorithm

TBRA Two-band ratio algorithm
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In this work, after review and demonstration of tradi-
tional passive schemes for bathymetry, we provide an origi-
nal and novel prototype system to objectively classify the
confidence of Himager. We advocate the generation of such
confidence products in parallel to remotely sensed bathyme-
try, where such a confidence measure would be essential to
promote the use of H imager by the broader community.

2. Overview of Passive Remote Sensing
Algorithms for Shallow-Water Bathymetry

Detailed descriptions of the derivation ofH from a Lidar sys-
tem can be found in Guenther [5], where the key is to obtain
precise measurements of time lapses of photons reflected by a
sea bottom. For a water body with a shallow bottom, the
remote sensing reflectance (Rrs, in sr-1)—the ratio of the
radiance (Lw) emerging from below the surface to the down-
welling irradiance just above the surface—can be expressed
as [36–38]

Rrs = Rdp
rs 1 − e− Kd+KC

uð ÞHh i
+ ρ

π
e− Kd+KB

uð ÞH : ð1Þ

Here, Rdp
rs is the remote sensing reflectance of the same

water body but with no impact from the bottom (i.e., opti-
cally deep); ρ is the bottom reflectance modified by air-sea
transmittance; Kd is the diffuse attenuation coefficient of

downwelling irradiance, with KC
u and KB

u for the diffuse
attenuation of upwelling photons generated due to scatter-
ing in the water column and bottom reflection, respec-
tively. Rdp

rs , KC
u , and KB

u can be parameterized with the
water inherent optical properties [13, 36, 39]. Thus, while
Rrs depends on the water optical properties and bottom
reflectance, it is also a function of the bottom depth (H).
Hence, various passive remote sensing algorithms have been
developed to retrieve H from this spectral signal [11, 13, 21,
40]. These algorithms can be grouped into three approaches,
two of which belong to the empirically based approach (EBA)
and the other classed as a semianalytical approach (SAA).
The following briefly describes the essence of these three
schemes.

2.1. Explicit Empirical Approach (EEA)

2.1.1. Multiband Value Algorithm (MBVA). With collocated
measurements of bottom depth and multiband radiometric
data, Polcyn et al. [10] proposed the first empirical algorithm
forH based on the difference between the shallow- and deep-
water Lw, with the algorithm further refined by Lyzenga
[12]. Generally, Himager can be written as

Himager = a0 + a1Y λ1ð Þ: ð2Þ

Here, Y is the logarithm of (Rrs − Rdp
rs ) or (Lw − Ldpw ) and

is calculated for a specific spectral band, while a0−1 are empir-
ical coefficients tuned using collocated Rrs (or Lw) and H.
This algorithm can be improved with the use of additional
bands:

Himager = a0 + 〠
N

1
aiY λið Þ: ð3Þ

N is the number of bands that are available and feasible
from an imager; thus, there are N + 1 algorithm coefficients
(a0−N) to be tuned. Since Equations (2) and (3) are empirical,
there is a potential that Rrs is smaller than Rdp

rs , e.g., over dark
seagrass regions, which then causes an invalid mathematical
calculation for Y ; this formula could be modified as [41]

Himager = α0 + 〠
N

1
αi ln Rrs λið Þð Þ: ð4Þ

Since bottom depth is related directly to the value of
Rrs, we term this empirical model for Himager as a multi-
band value approach (MBVA). Comparing Equation (4)
with Equations (1)–(3), they are essentially the same,
except that the Y (a difference between the shallow and
deep regions in an image) in Equations (2) and (3) is
replaced by Rrs in Equation (4).

2.1.2. Two-Band Ratio Algorithm (TBRA). Also, recognizing
that the difference between Rrs and Rdp

rs could be negative

Lidar

Imager

Figure 1: An example showing collocated measurements between
Lidar and multiband imagers. The red dashed line shows a
measurement track of ICESat-2, while the background image was
captured by Landsat-8.
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over dark bottom substrates, Stumpf et al. [25] developed
an empirical approach from the Rrs ratio of two bands
to estimate H:

Himager =m0 +m1Zi−j, ð5Þ

Zi−j =
ln 3:14 nRrs λið Þð Þ
ln 3:14 nRrs λj

� �� � : ð6Þ

The three model coefficients (n,m0,1) are also tuned using
pairs of collocated Rrs andH. The value of n ranges 500-1500
and is usually fixed at 1000 [25, 42], while Traganos and
Reinartz [34] indicated that a value of n = 1:0 works fine for
a seagrass environment. As demonstrated in many studies
[24, 25, 42], maps of bathymetry can be generated following
this scheme. It is also possible to use the logarithm of the
Rrs ratio from two bands for the empirical estimation of H
[43]. However, Traganos et al. [41] found that the perfor-
mance is worse than using the formulation given by Equation
(5); hence, its discussion is omitted here. Because this
approach employs a ratio of Rrs at two bands, we term this
scheme a two-band ratio algorithm (TBRA), although Equa-
tion (5) can be expanded to include more available bands.
The algorithms following Equations (2)–(5) are data-based
(empirical), where algorithm relationships and coefficients
are explicit, and the coefficients are driven by pairs of known
H and Rrs. Note that if Rrs from more bands are required, it
then places higher demands on atmospheric correction,
especially in the longer wavelengths over optically shallow
regions, where presently the OLI Rrs value in the red band
sometimes is invalid.

2.2. Implicit Empirical Approach (IEA)

2.2.1. Estimation from Rrs. Different from the explicit empir-
ical algorithms shown above, the machine learning approach
(MLA, which in this manuscript collectively stands for neural
networks, machine learning, and deep learning) is another
data-based approach for the estimation of H from remote
sensing measurements [29, 30, 44, 45]. Unlike EEA, the
algorithm dependence or relationships and coefficients of
MLA are hidden in the computer programming architecture
(various layers and neurons), so it is not obvious how Himager
varies with Rrs or spectral radiance. As there are no explicit
equations or parameters for such an approach; conceptually,
the algorithm can be expressed as

Himager = MLARrs Rrs λið Þð Þ: ð7Þ

Here, λi is the available and feasible band for the estima-
tion of H (e.g., usually Bands 1-4 for Landsat-8 OLI),
although there are no specific restrictions of Rrs that can be
used.

2.2.2. Estimation from Top-of-Atmosphere Reflectance. Given
that machine learning is empirical, another way to utilize
MLA for H estimation is to bypass atmospheric correction
[46], thereby estimating H and/or water properties directly

from the top-of-atmosphere reflectance (ρtoa) [47]. Like
Equation (7), this scheme can conceptually be defined as

Himager = MLAρtoa ρtoa λið Þð Þ: ð8Þ

To implicitly account for the contribution of atmosphere
to ρtoa, the range of λi will be from the visible to NIR-SWIR
bands (e.g., Bands 1-7 for Landsat-8 OLI). Similar to the
algorithms in Section 2.1, when sufficient pairs of H and
ρtoa are available, an MLAρtoa can be developed for the
remote sensing ofHimager from ρtoa. While an EEA like Equa-
tion (5) could be developed with 5-10 data points, an MLA
requires much more data (usually hundreds or more) in the
training phase. In addition, an MLA is much more complex
in the computer architecture than the simple mathematical
formulation presented in Equations (2)–(5).

2.3. Semianalytical Approach (SAA). A completely different
set of algorithms for H is based on the radiative transfer
equation. After parameterizing the spectra of inherent optical
properties (IOPs) and bottom reflectance in Equation (1), an
Rrs spectrum of shallow water could be simplified with five
variables and expressed as [13]

Rrs λð Þ = F P,G, X, B,Hð Þ: ð9Þ

Here, P and G represent the absorption coefficient of
phytoplankton (aph) and detritus-gelbstoff (adg), X is the
particle backscattering coefficient (bbp), and B is the bottom
reflectance, all set at a reference wavelength, such as
440 nm. The five variables can be solved numerically through
spectral optimization (or minimization) by minimizing a
cost function computed between the measured and modeled
Rrs spectra, defined as

errRrs =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑N

1 Rmod
rs λið Þ − Rmea

rs λið Þ� �2q
∑N

1 R
mea
rs λið Þ

: ð10Þ

Provided there is a sufficient number of spectral bands
and that the Rrs spectrum is in high quality, H imager can be
generated from image-based spectrometers without a priori
data pairs of H and Rrs [35, 48, 49]. In addition, the bottom
substrate class and water optical properties could also be gen-
erated from this process [14, 15, 19]. The SAA is extremely
valuable to measurements that have Rrs only, but the
retrievals depend on the quality of the Rrs spectrum and the
number of spectral bands [21, 33, 35, 50]. For multiband
imagery that has a limited number of spectral bands in the
visible domain, such as Landsat-8 OLI and Sentinel-2 MSI,
modifications on the SAA variables and processing are
necessary [51]. Additionally, its computational load is sig-
nificantly greater than that of EBA because an SAA solves
4-5 variables simultaneously for a given Rrs spectrum; for-
tunately, this demand can be met with greatly improved
computer technology.
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3. Data and Processing

Landsat-8 OLI and ICESat-2 measurements are used here to
demonstrate H imager maps from collocated Lidar data and
multiband imagers and the generation of a pixel-wise
Himager confidence score.

3.1. Landsat-8 Data. Landsat-8 is an extension of the earlier
Landsat series [52] and was launched on February 11, 2013.
Its OLI has seven bands in the ~440–2200 nm domain to take
measurements of the earth-atmosphere system. In particular,
the spatial resolution of Landsat-8 OLI is 30m, which pro-
vides detailed features of coastal regions where bottom depth
can be highly heterogeneous. The Landsat-8 OLI Level-1 data
processed by the Level-1 Product Generation System (LPGS)
can be downloaded from the USGS website (https://glovis
.usgs.gov/). The ρtoa image data were processed using the
SeaDAS package (v7.5) [53], and the atmospheric correction
algorithm proposed by Bailey et al. [54] was adopted for the
generation of Rrs. A low threshold of 0.0003 sr-1 is used for
Rrsð665Þ if it is found that the obtained Rrsð665Þ is negative.
Here, a few images over Florida Bay (24.76-24.89°N, 80.75-
80.77°W; June 9 and October 15), the Great Bahama Bank
(23.96-25.14°N, 76.80-76.93°W; March 7 and May 26), and
the Great Barrier Reef (23.18-23.57°S, 151.68-151.93°E;
August 8 and September 17) captured in 2019 were processed
and utilized as examples.

3.2. ICESat-2 Data. ICESat-2 was launched on September 15,
2018. It is a follow-on mission to Ice, Cloud and land Eleva-
tion Satellite (ICESat) and provides global altimetry and
atmospheric measurements with emphasis on surface eleva-
tion changes in polar regions [9]. The sole instrument
onboard ICESat-2 is the Advanced Topographic Laser Altim-
eter System (ATLAS), a green (532 nm) wavelength, photon-
counting laser altimeter with a 10 kHz pulse repetition rate
[9, 55]. ATLAS uses photomultiplier tubes (PMTs) as detec-
tors in the photon-counting mode so that a single photon
reflected back to the receiver triggers a detection within the
ICESat-2 data acquisition system. This single-photon-
sensitive detection technique used by ATLAS to measure
photon time of flight provides a very high vertical resolution
required to detect small temporal changes in polar ice eleva-
tions [56, 57], as well as the bottom depth of optically shallow
waters [7].

3.3. Data Matchup and Statistical Measures. Matchup data-
sets between the Landsat-8 OLI and ICESat-2 measurements
were organized with the following processing steps: the
Landsat-8 OLI pixels of dense clouds were first discriminated
and removed based on the threshold of Rayleigh reflectance
at the SWIR band (1238 nm) [58]. Meanwhile, the pixels
of low-quality Rrs were removed based on the standard
Level-2 quality flags included in SeaDAS, which include
ATMFAIL (atmospheric correction failure), LAND (land
pixel), CLDICE (probable cloud or ice contamination), HILT
(very high or saturated observed radiance), and HIGLINT
(strong sun glint contamination).

The ICESat-2 bathymetry results presented in this work
use geolocated photon data, contained in the ATL03 data
product, which are segmented into granules that span about
1/14th of an orbit [59]. Both OLI Rrs and ATL03 photon
products include latitude and longitude information within
the WGS-84 coordinate reference system.

Considering the variation of H (after tidal correction) is
negligible within a short period, the time constraint for “con-
current” Landsat-8 OLI and ICESat-2 data is set as ±2 weeks,
and the ICESat-2 H product is adjusted to match the tidal
cycle of Landsat-8, where the classical tidal harmonic analysis
model T_TIDE was applied to calculate tide information of
interested locations [60]. To match the measurement
between ICESat-2 H and OLI Rrs, we first located the
ICESat-2 track within the OLI image. For an ICESat-2 data
point, a Landsat-8 pixel was first selected based on the closest
distance. Since the spatial resolution of ICESat-2 along the
orbit track is 0.7m, while the footprint of OLI is 30m, there
are many ICESat-2 measurements within an OLI pixel.
Therefore, for this OLI pixel, all ICESat-2 pixels within a
radius of 15m are used to calculate the mean H value and
considered the matchup HLidar for this OLI Rrs.

To measure the deviation or error of the H imager product,
in addition to the coefficient of determination between any
two sets of data, the root mean square error (RMSE) and
the mean absolute relative error (MARE) between Himager
and HLidar are calculated:

RMSE =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
M

〠
M

1
HLidar −H imager
� �2s

,

MARE = 1
M

〠
M

1
1 −

H imager
HLidar

����
����,

ð11Þ

where M is the total number of pairs used in the analyses.
Note that the term “error,” rather than the term “difference,”
is used in these analyses. This is because the uncertainty of
HLidar is very low (a few centimeters); thus, HLidar could be
considered the ground “truth,” and any difference between
Himager andHLidar will be most likely in the system to produce
Himager.

4. Predictability of Empirical Schemes

For a robust empirical scheme, the first aspect is to check if
there are strong correlations between the input and the
desired output, which is termed as predictability here and
measured by the coefficient of determination in linear regres-
sion (R2). A value of R2 = 1:0 indicates a 100% predictability
or certainty. For the case of bathymetry, the output is the
bottom depth, while the input is the spectral information
(spectra of ρtoa or Rrs here) or value after its mathematical
transformations (e.g., parameters Y or Z in Equations
(2)–(5)). In the following, we use the compiled matchup
datasets to show the different predictability of the abovemen-
tioned empirical schemes (TBRA, MBVA, MLARrs, and
MLAρtoa).
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4.1. Predictability with Data from One Image.Many publica-
tions [24, 26, 41] have shown strong predictability (R2 ≥ 0:86
) of EEA (TBRA or MBVA) for the estimation of H from Rrs.
Such high predictability is not always the case [28] (also see
Table 2). Figure 2 shows matchup measurements (>3500
pairs) over the Great Bahama Bank, an environment with
generally clear water and shallow depths [43, 61, 62]. The
OLI Rrs was obtained on March 7, 2019, where HLidar
(obtained on March 16, 2019) ranges ~1.5–9.0m after tide
correction. The R2 value between Z2−3 (for the Rrs ratio of
OLI Band 2 and Band 3) and HLidar is ~0.36 (Figure 2(b)),
which is dropped to ~0.20 when Z2−3 is changed to Z1−3.
These values indicate that such a ratio at most explained
<40% of the variance for this dataset, although the radio-
metric measurements came from the same image, and that
the distance of the points (see the red dashed line in
Figure 2(a)) spans ~110 km. Most of the remaining variances
(>60%) are likely from the water column and bottom proper-
ties (i.e., assuming that uncertainties from sun-sensor geom-
etry and atmospheric properties can be omitted), and these
variations could not be resolved from Z2−3. These R

2 values
are significantly lower than those reported in previous studies
[24, 26, 63], indicating a high data or environmental depen-
dence of TBRA and its algorithm coefficients (m0−1). The
use of 20 or so data pairs to obtain a stable set of m0−1
[63, 64] will likely be a special case, rather than a common
situation. This also echoes the findings of earlier studies
[25, 27, 65] that one set of empirical coefficients cannot
satisfy all pixels, even for the same image, unless the
threshold for acceptable uncertainty is relaxed.

The R2 value increases to 0.88 (Figure 2(c)) if MBVA
(Equation (5)) is used to predict HLidar for the same dataset,
indicating significantly higher predictability of MBVA for
this dataset or environment. The results are even better (R2

as 0.91), although not much, if an MLA with 1 hidden layer
and 5 neurons (for an Rrs spectrum containing four visible
bands) is used (Figure 2(d) and Table 2). These results high-
light the importance of using more bands [66], explicitly
(MBVA) or implicitly (MLA), to account for the likely
changes of water properties and bottom substrates across
an image.

In an MLA, each neuron is similar to a free variable in a
multivariant nonlinear regression; thus, more free variables
tend to improve regressions. For the MLA with 1 hidden
layer and 5 neurons (for Rrs), the number of free variables
is equivalent to that for MBVA; therefore, the results suggest

an improved capability of MLA to pick up hidden relation-
ships between Rrs and HLidar. This predictability is further
improved with a deep learning architecture of using 3 hidden
layers and more neurons (see Table 2), indicating a great
potential of machine learning for empirical estimation of bot-
tom depth. Further, it is found that the statistical measures
are nearly the same (see Table 2) between using Rrsð443‐
655 nmÞ and using ρtoað443‐2200 nmÞ (1 hidden layer with
8 neurons, i.e., number of spectral bands plus 1) as the input
to an MLA. These results suggest that through a nonlinear
scheme like MLA, it is feasible to bypass the atmospheric
correction step to retrieve H directly from the top-of-
atmosphere measurements [46].

4.2. Predictability with Data fromMultiple Images. To further
observe the impact of data on the predictability of using
two bands or multiple bands, especially the tolerance of
MLA, a total of 5172 pairs of collocated Landsat-8 OLI
and ICESat-2 data covering waters of the Bahamas (23.96-
25.14°N, 76.80-76.93°W), Florida Bay (24.76-24.89°N, 80.75-
80.77°W), and the Great Barrier Reef (23.18-23.57°S, 151.68-
151.93°E) were compiled. For HLidar, corrected to match the
tidal cycle of OLI measurements, in a range of ~1.0-11.0m,
TBRA, MBVA, and MLA produced R2 values of 0.48, 0.84,
and 0.91, respectively (see Table 3). MLAρtoa performs
slightly better than MLARrs across these multiple images
where there are various atmospheric properties, further sup-
porting the concept of obtainingH imager from ρtoa whenMLA
is applicable. The improved predictability of MBVA and
MLA is echoed by the MARE and RMSE values (see
Tables 2 and 3), which are calculated after the model coeffi-
cients are determined through tuning or training. For
instance, the MARE value is ~10% with RMSE as 0.54m for
MBVA, and MARE is ~8% with RMSE of 0.52m for MLA.
However, TBRA achieves a MARE value of 27% with RMSE
as 1.25m (see Table 3), which are about three times the
values obtained using MBVA and MLA. These evaluations
indicate improved predictability of using more bands, rather
than using information from two bands, for the calculation of
Himager.

Such a result is expected because, as shown by Equation
(9), Rrs of shallow water is governed by at least 4-5 variables;
thus, a ratio of Rrs at two bands cannot resolve all unknowns,
unless some of them are nearly constant or covarying with
each other for a region of interest. However, even for this
region in the Bahamas, as shown by Barnes et al. [61] and

Table 2: Values of R2 between Rrs or ρtoa and HLidar from a single Landsat-8 image (Great Bahama Bank, March 7, 2019), with the matchup
HLidar in a range of ~1.5–9.0m, and a total number of data pairs of 3512.

Algorithm type Number of free variables in an algorithm R2 MARE RMSE (m)

TBRA 2 0.36 0.16 1.02

MBVA 5 0.88 0.05 0.44

MLARrs 1 hidden layer, 5 neurons 0.91 0.05 0.39

MLAρtoa 1 hidden layer, 8 neurons 0.90 0.05 0.40

MLARrs 3 hidden layers, 128, 32, and 16 neurons 0.97 0.04 0.33

MLAρtoa 3 hidden layers, 128, 32, and 16 neurons 0.97 0.04 0.31
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Garcia et al. [62], their H, IOPs, and bottom substrates vary
spatially. This is further evidenced by the spatial variation
of að440Þ (see Figure 3) derived from HOPE for the matchup

data in Figure 2, where að440Þ varied from ~0.03 to 0.09m-1,
showing limited correlation (R2 as 0.18 and an inverse rela-
tionship) with HLidar. For such a wide variability in að440Þ
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Figure 2: Relationships betweenHLidar and radiometric measurements. (a) Measurement track of ICESat-2 (March 16, 2019) over a Landsat-
8 image (March 7, 2019) in the Great Bahama Bank. (b) Relationship between HLidar and Z2−3 of the matchup data. (c) Relationship between
HLidar and Himager when MBVA is used for the empirical algorithm. (d) Relationship between HLidar and Himager when MLARrs is used for the
empirical algorithm. The color coding in the scatterplots indicates the density of data points.

Table 3: R2 values between Rrs or ρtoa and HLidar from multiple Landsat images. Matchup HLidar is in a range of ~1.0–11.0m, with 5172
data pairs.

Algorithm type Number of free variables in an algorithm R2 MARE RMSE (m)

TBRA 2 0.48 0.27 1.25

MBVA 5 0.84 0.10 0.54

MLARrs 1 hidden layer, 5 neurons 0.91 0.08 0.52

MLAρtoa 1 hidden layer, 8 neurons 0.92 0.08 0.51
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(and no covariance with H), which plays a key role in the
spectral variation of an Rrs spectrum, more bands and more
free variables in an algorithm would improve the predictabil-
ity. Note that að440Þ in Figure 3 is derived from HOPE with
H fixed asHLidar from ICESat-2 (after tidal correction) and G
fixed as 0.002m-1 (see Section 5.2 for details), so the only
variables are P, B, and X for Equation (9); therefore, the
resulted P values (and then að440Þ) are more reliable after
the reduction of variables.

5. Applicability and Confidence Measure

The ultimate goal of any algorithm is to apply it to new mea-
surements, i.e., data not used in the tuning or training, in
order to obtain the desired remotely sensed product. While
an empirical algorithm for H can be easily developed from
collocated imagery and HLidar data, the extent that such an
algorithm can be applied to new data is unknown. It has been
demonstrated that the model coefficients (e.g., a0,1 and m0,1
in Equations (2)–(5)) developed from one image cannot be
applied to another image if low uncertainties are the goal
[26]. The scatter in the regression shown in Figure 2 indicates
that these empirical coefficients may not be applicable even
for locations within the same image, unless larger uncer-
tainties are acceptable.

Conventionally, the applicability of an algorithm is
assessed by evaluating its performance using an independent
dataset, with the reported RMSE and/or MARE values as jus-
tifications [25–27]. It is necessary to keep in mind that such
averages, although informative, are dependent on the data
pool and do not represent the error or uncertainty of each
pixel [34]. Because different users have different tolerance
for the uncertainty of Himager (e.g., high requirement of accu-
racy for navigation), the average error is insufficient to
inform all users of H imager. It is necessary and important to
provide a confidence measure for H imager products at each
grid or pixel. The following addresses the confidence associ-

ated with both EBA and SSA, with a first-ever attempt to
provide a pixel-wise confidence measure for Himager.

5.1. Applicability of EBA and Measure of Confidence

5.1.1. Issues of the Himager Map from Landsat-8 OLI.
Following the practices commonly presented in the literature
[23, 25], a map of 30m resolution Himager (see Figure 4) over
the Great Bahama Bank was generated from a Landsat-8 OLI
image (May 26, 2019) with a TBRA tuned using matchup
data generated from this image and ICESat-2 bathymetry
(May 25, 2019, the red dashed line in this map, and a total
of 1707 pairs of data). As shown in the literature [23, 25]
and as desired, the discrete or line-type bathymetry product
from ICESat-2 is now expanded to form a bathymetry map.
Overall, for the western side of Andres Island, Great Bahama
Bank, the bottom depth ranged from ~2.0 to 8.0m. This is
consistent with our general understanding and depth
retrievals from other observations and methods [61, 62, 67].
On average, the difference is ~28.0% when compared with
that derived from MERIS [62], which is consistent with
those reported in the literature [26, 28]. However, obvi-
ously, there are erroneous outputs, where the bathymetry
is ~15.0m for the Tongue of the Ocean (TOTO), which
is known to be ~2000 meters deep. In other words, a
“false positive” of the shallow bottom is derived from
TBRA (similar “shallow bottom” for TOTO is also
observed from MBVA and MLA, results not shown here).
Such false positives can also be found in Caballero and
Stumpf [26] for waters around Dry Tortugas, Key West
(see Fig. 6d of Caballero and Stumpf [26]). These false
positives are a result of the following two inherent limita-
tions of empirical algorithms for H:

(1) Empirical algorithms for H (e.g., Equations (2)–(8))
are developed using data from optically shallow
waters, as only such data has an optical signal from
the bottom
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Figure 3: Variation of að440Þ and HLidar along the ICESat-2 track in Figure 2.
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(2) By design, the empirical algorithm is data-driven; i.e.,
it can only be applied to measurement with similar
characteristics as the training data

When an EBA, such as the TBRA, is applied to multiband
imagery, however, these two basic requirements or assump-
tions are hardly tested or evaluated a priori. In other words,
an Himager map was generated by assuming, blindly, the algo-
rithm is applicable to any Rrs in an image used during the
algorithm tuning. Consequently, an erroneous bottom depth
over TOTO was generated (see Figure 4). For this image, we
know TOTO is optically deep, so such false products can be
easily ignored or masked out. However, not all locations or
pixels within an image do we know a priori their optical
properties; thus, it is not certain if the environment is opti-
cally shallow or not. Therefore, it is not straightforward to
mask out optically deep waters with empirical algorithms
such as Equations (2)–(8). As such, usually, the resultant
Himager of deeper depths were manually, and arbitrarily,
masked out (e.g., [68]).

5.1.2. Criteria to Check the Applicability of an Empirical
Algorithm for Himager . To confidently apply an EBA Himager
algorithm to a new Rrs spectrum, to the least, it is important
and necessary to check if the Rrs from this target location
meets the following two criteria:

(1) Criterion 1 (Cr1). If it is optically shallow; and

(2) Criterion 2 (Cr2). If there is an identical or similar Rrs
spectrum in the training pool.

Such two criteria are omitted or ignored at present in the
practices related to EBA for Himager, although an SAA can
separate optically deep vs. optically shallow during data
processing [20, 35].

Given that the EBA formulation for deriving depth
cannot provide information on whether a pixel is optically

deep or shallow, a neural network (NNOSW) based on Multi-
layer Perception (MLP) was developed to aid in the determi-
nation of Cr1. MLP is a class of feedforward artificial neural
networks (ANN) composed of one input layer, one or multi-
ple hidden layers associated with one output layer. Since here
Landsat data are used, values of Rrsð443Þ, Rrsð482Þ, Rrsð561Þ,
and Rrsð655Þ are the input, while the output is optically deep
(assigned a value of 0) or shallow (assigned a value of 1). The
number of hidden layers and the number of neurons of each
layer were determined following the concept of minimum
loss, a common approach for developing a deep learning sys-
tem. Data used for the training came from known optically
deep (Landsat measurements in Massachusetts Bay, Chesa-
peake Bay, and TOTO) and optically shallow (Great Bahama
Bank, Florida Keys) environments. After many training
attempts, two hidden layers with 32 and 16 neurons were
found to provide the best performance for this separation.
Separately, the Rectified Linear Unit (ReLu) function for the
activation function of hidden layers is employed, which can
largely avoid gradient disappearance. Since it is binary classi-
fication, the activation function of the output layer is a
Sigmoid function. The training stage was eventually achieved
when the iteration is stopped, and the loss function con-
verges. Figure 5 shows an example of the OSW classification
after applying NNOSW to the Landsat-8 OLI image displayed
in Figure 1. Although the deep vs. shallow separation may
not be perfect at this stage, waters of TOTO are optically deep
and clearly separated. Since all neural network-based algo-
rithms are data-driven, we envision that this initial NNOSW
will be updated after more optically deep and shallow data
are employed.

Further, a similarity index (SIMRrs) is designed for Cr2,
such that the higher the SIMRrs value, the higher the measure
of similarity; therefore, the target Rrs spectrum is likely
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Figure 4: Bathymetry map for the image shown in Figure 1
obtained through the fusion of ICESat-2 HLidar and Landsat-8
radiometric measurements. Grey and white colors represent land
and cloud or nonvalid Rrs, respectively. The red dashed line is the
measurement track of ICESat-2.

Shallow

Deep

Figure 5: Classification of optically shallow waters (red color) with
a neural network scheme. Blue, grey, and white colors represent
optically deep waters, land, and cloud or nonvalid Rrs, respectively.
There are more white pixels than in Figure 4, which is a result of
negative or no Rrs data at 561 or 655 nm.
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“learned” in the phase of algorithm development. In this
effort, SIMRrs is defined and calculated as follows.

A target Rrs spectrum (Rtar
rs ) is evaluated against each Rrs

spectrum in the training pool (RrefðjÞ
rs ):

MARD1Rrs jð Þ = 1
N
〠
N

i=1
1 − Rtar

rs λið Þ
Rref jð Þ
rs λið Þ

�����
�����, ð12Þ

MARD2Rrs jð Þ =
∑N

i=1 R
tar
rs λið Þ − Rref jð Þ

rs λið Þ
��� ���
∑N

i=1R
ref jð Þ
rs λið Þ

: ð13Þ

Here, MARDRrs represents a mean absolute relative dif-
ference between two Rrs spectra, with j for the jth Rref

rs . The
calculations of Equations (12) and (13) show two ways of
quantifying MARD, where a small difference in Rrs at a single
band plays a bigger role for MARD1Rrs, while it is the large
value in Rrs that plays a larger role for MARD2Rrs. Since there
are many RrefðjÞ

rs in the data pool (1707 pairs in this case),
many MARD1Rrs and MARD2Rrs values for a given Rtar

rs will
be obtained; the minimum of the combination of MARD1Rrs
and MARD2Rrs is selected for the quantification of SIMRrs,
calculated as

SIMRrs = 1 −min 0:5MARD1Rrs jð Þ + 0:5MARD2Rrs
jð Þ� �� �

,
 within allRref jð Þ

rs :

ð14Þ

The use of 50% for both MARD1Rrs and MARD2Rrs is a
compromise between the two ways of evaluating spectral
differences.

5.2. Confidence Score System for Himager . We thus propose to
use this similarity measure to gauge the likely quality of
Himager. For instance, if SIMRrs = 1:0 for an Rtar

rs , it indicates

that there is an identical Rref
rs in the training pool. Further,

we know the absolute relative error of H (AREH) for each

H imager in the data pool (see Figure 6 for example); thus,
an identical AREH for this Rtar

rs is expected from that for
Rref
rs , which can be found in the data pool. Therefore,

based on the value of AREH, the confidence or quality of
each H imager can be classified as detailed below. Here,
AREH is calculated as

AREH =
∣Himager −HLidar ∣

HLidar
: ð15Þ

While a low SIMRrs value indicates low confidence in
H imager (i.e., R

tar
rs is likely out of the data range in training),

a high SIMRrs value is not automatically a guarantee of high
confidence or high accuracy of Himager. As shown in
Figure 6, although the mean of the AREH is ~5% (R2 value
is 0.69 between Himager and HLidar) for the entire dataset, it
does not suggest it is 5% for each point. For some data points,
the AREH could be as high as 20%. Thus, if this Rtar

rs matches
the Rref

rs having an AREH of 20%, the H imager of this R
tar
rs is

expected to have such a relative error from this algorithm.
Following the above indications, we designed a prelimi-

nary confidence score system (CSS) based on both SIMRrs
and AREH in the data pool to classify the quality of the
Himager product. At this initial stage, this CSS is designed to
coarsely classify the confidence of H imager into three classes:
low (score = 1), medium (score = 2), or high (score = 3),
which is determined based on a decision tree (see Figure 7
for details). With this tree, H imager from an Rtar

rs spectrum
having both high SIMRrs values and low AREH values can
be considered to have high confidence.

Figure 8 shows a map of confidence for the H imager prod-
uct presented in Figure 4. Generally, for pixels not too far
from the track of ICESat-2 and with depths ~6.0-8.0m, the
confidence ofHimager is high, a result of similar characteristics
in the Rrs data and the environment that were used in the
training. For pixels near the coast of Andros Island and those

A
RE

H

0.00

0.05

0.10

0.15

0.20

0.25

2

3

4

5

6

7

8

AREH

HLidar 

H
Li

da
r (

m
)

Figure 6: Variation of HLidar and AREH along the ICESat-2 track in Figure 1.
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in the Exumas region (east of TOTO) where the retrieved
Himager is generally under ~4.0m, the confidence of Himager
is low. This is because the data pool used to develop the
empirical algorithm has a depth range of ~5.0-8.0m (see
Figure 6); thus, this empirical algorithm did not “learn” the
spectral characteristics of Rrs of depths shallower than
~4.0m or with very different bottom and/or water properties
(see Figure 3 for the wide variation of að440Þ). This low con-
fidence is further confirmed using HLidar obtained on March
16, 2019 (the black line in Figure 8). After adjusting the tidal
cycle to match the image time of May 26, 2019, and assuming
no significant changes of bottom topography in the past ~70
days, it was found that AREH is generally around 40% or
more (see Figure 9), above the 25% criterion of low confi-
dence. The overall accuracy of classifying low-confidence
pixels is 80.2%, while the accuracy of classifying medium-
and high-confidence pixels is ~1%. This extremely low accu-
racy for medium- to high-confidence pixels is due to the low
number of such data points (see Figure 3), thus statistically
not significant. The less than perfect classification result, in
part, results from a few (~200) measurements where HLidar
values are less than 4.0m, but the AREH values for these
points are under 10%; i.e., they belong to the high-
confidence category. This excellent performance of TBRA
for these pixels deserves further studies as the range of
HLidar used in TBRA development was ~5.0-8.0m (see
Figure 6). Nevertheless, these results (Figures 6, 8, and 9)
highlight that, unlike Sonar- or Lidar-produced H where

the uncertainty in H measurement is generally uniform, the
uncertainty or confidence of the Himager product is far from
uniform [34]; thus, it is important and necessary to have a
pixel-wise measure of the quality of Himager. Further, the
>80% success rate suggests that the CSS does provide a good
indication of the confidence of H imager, although there is
room for improvement.

Caballero and Stumpf [26] suggested the use of multiple
acquisitions to measure the performance of an algorithm,
with an assumption that bottom depth should remain the
same (after tidal correction) for a short period of time. These
multiple observations are useful and important [51], but they
may not overcome systematic biases embedded in an empir-
ical algorithm. One example is the “shallow bottom” of
TOTO (Figure 4); such “shallow bottom” will repeat itself
when similar empirical algorithms are applied to new multi-
band images.

5.3. Applicability of SAA

5.3.1. Example of Himager from Landsat-8 OLI. SAA is not
data-driven; its applicability is dependent on the Rrs spec-
trum itself, as well as the bio-optical models and the simpli-
fied expression for Rrs [13, 21, 35, 50]. As articulated in
many studies, SAA requires a highly accurate Rrs spectrum
as input, as errors in Rrs will be propagated into the retrieved
IOPs and/or Himager [21, 33, 35]. While empirical algorithms
can overcome some systematic errors in Rrs in the tuning or
training phase, SAA, at least in its present form, cannot. In
addition, the number of wavelengths plays an important role
in the retrieval of H [50]. This is because, within an SAA, the
IOPs and bottom properties are assumed independent vari-
ables, while empirical algorithms (especially MLA) may find,
and remedy to some extent, some hidden relationships
among them and therefore transfer systematic bias or
relationships into the algorithm coefficients (explicitly or
implicitly).

To demonstrate the retrieval of H imager from Landsat-8
OLI data with an SAA, the default HOPE algorithm was
applied to the data pairs shown in Figure 2(a) (the red line),
a data pool of a wide range of bottom depths (HLidar is ~1.5-
9.0m) and dynamic water properties (að440Þ is in a range of
~0.03-0.09m-1). Because Landsat-8 OLI has only four usable
bands for shallow-water remote sensing (the 865nm has
nearly no information of the water and bottom for most

SIMRrs
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1 (low)

> 0.75
AREH

> 0.25
1 (low)

0.10–0.25

< 0.10

2 (medium)

3 (high)
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Figure 7: Decision tree to determine the confidence score of Himager obtained through an empirical algorithm.

Deep

High (3)

Medium (2)
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Figure 8: Confidence score map for the H imager product shown in
Figure 4. The black dashed line is the measurement track of
ICESat-2 on March 16, 2019, where HLidar is used as independent
measurement to evaluate the confidence map.
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water bodies), Equation (9) is underdetermined. Considering
that the spectral shapes of aph and adg in the 440–561 nm
range are similar, and that aph and adg do not make signifi-
cant contributions to the total absorption at 561nm, here,
G in Equation (9) was fixed as 0.002m-1 in order to process
Landsat-8 Rrs, and this modified version is termed as
HOPELS8. This fixed G value of 0.002m-1 is simply a reflec-
tion that for waters in this region, it is close to the lowest
value for adg(440) [61]. Also, note that HOPELS8 is certainly
subject to refinement, but that is not the focus here.

Figure 10(a) compares the profiles of H imager from
HOPELS8 with HLidar from ICESat-2, which are two indepen-
dent determinations, and an R2 value of 0.66 was obtained.
Figure 10(a) also shows the profile of AREH for each pair,
which ranges from 0.2 to 100%, with a median value of
17.7%. Although a generally consistent bathymetry pattern
of H imager from HOPELS8 is obtained, these statistical mea-
sures do suggest that substantially more effort is required if
high-confidence Himager is to be retrieved by HOPELS8 from
such multiband Rrs.

There could be many sources contributing to the moder-
ate performance in the retrieved Himager. These include the
sensor’s calibration, the atmospheric correction, the bio-
optical models used in HOPELS8, or the number of available
bands. It is not the scope of this effort to address the impact
of those elements and the refinement of HOPELS8, where
algorithm improvement is constantly ongoing. Here, we
focus on the necessity and development of a CSS to measure
the pixel-wise confidence of Himager retrieved from an SAA
(such as HOPELS8). Brando et al. [35] developed a system
to classify the quality of Himager into two categories (good
or bad) based on the errRrs value (Equation (10)) and
assumed that H imager has high confidence when a low errRrs
value (i.e., good closure between the measured and modeled
Rrs spectra) is obtained. However, errRrs is determined by
various components and many sources; there could be the
same errRrs but with different H results. For instance, when
the bio-optical models are modified, a differentHimager would
be retrieved, but the value of errRrs can remain the same.
Thus, as demonstrated in Figure 10(b) and previous studies
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[13, 35, 49], there is no relationship between errRrs and AREH
(R2 is ~0.1); thus, errRrs is insufficient to indicate the quality
of Himager when it is retrieved with an SAA. A small errRrs,
by its definition, indicates only a high agreement between
the measured and modeled Rrs spectra.

5.3.2. Confidence Score System for SAA-Derived Himager .
Following the CSS scheme for EBA, a prototype CSS for
Himager from HOPE (CSSHOPE) was also developed and pre-
sented in Figure 11. Since an SAA determines a set of solution
using errRrs, a first-order decision could be based on the value
of errRrs [13, 35]. If the errRrs value is higher than a threshold,
it indicates that the closure between the input and output Rrs
spectra is not enough; thus, the retrieved Himager could be
questionable [13, 35]. Here, we tentatively set this threshold
for errRrs as 0.02, as most errRrs values are found smaller than
this value (see Figure 10(b)) for the data pool shown in
Figure 2. When there are no collocated and reliable H data
available, the maximum relative contribution from the bot-
tom to the total Rrs is used as an indicator to gauge the con-
fidence of estimatedHimager [20, 35]. Too low a value (usually
the threshold is 20% [20]) suggests a low contribution from
the bottom and low confidence of retrieved bottom proper-
ties [35]. Since there are matchups between Rrs and HLidar,

the CSS developed for EBA could be employed for pixels with
errRrs values below the threshold, as illustrated in Figure 11.
Thus, forH imager derived from HOPELS8, a companion confi-
dence score could also be produced.

As an example, Figure 12 shows a map of H imager
obtained from HOPELS8 (Figure 12(a)) and its confidence
map (CSSHOPE, Figure 12(b)). Similar to the bathymetry
map obtained from TBRA, the depth in the west of Andros
Island obtained from HOPELS8 also has a range of ~4.0-
8.0m, a generally consistent pattern as observed before. For
waters of the TOTO, the Himager map shows a depth of
20m, which is basically the upper boundary preselected
within the HOPELS8 system, where actually the contribution
from the bottom is negligible when processed with HOPELS8,
so it can be easily marked as optically deep water as in
Lee et al. [20] and Brando et al. [35]. More importantly,
the pixel-wise quality of Himager (CSSHOPE) shown in
Figure 12(b) provides a clearer indication of the confidence
on the Himager product pixel by pixel. Similarly, as Figure 8,
higher confidence of Himager is found for pixels around the
ICESat-2 track, and low confidence is found for locations
near the coast. Evaluation using HLidar (March 16, 2019)
(the black dashed line in Figure 12(b)) indicates a success rate
of ~99% in identifying low-confidence pixels. In addition,
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< 0.02

<= 0.75
1 (low)

> 0.75

> 0.25
1 (low)

0.10–0.25

< 0.10
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Figure 11: Decision tree to determine the confidence score of Himager obtained through a semianalytical algorithm.
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Figure 12: (a) As Figure 4, the Himager map obtained from Landsat-8 OLI Rrs after applying HOPELS8. (b) Confidence score map for the
Himager product shown on the left. Grey color for land, and white for cloud or nonvalid Rrs.
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there are differences in the distributions of confidence
between the two Himager products (see Figures 4 and 12), a
clear indication of the performance of different approaches
for bathymetry. On the other hand, because Himager from an
SAA (e.g., HOPELS8 here) is an independent determination
of H from that of HLidar, SAA offers an opportunity to check
consistency from the two measurements, which is not possi-
ble with EBA.

6. Conclusions and Future Perspective

Through many decades of effort, there is no shortage of
remote sensing products from multiband or hyperspectral
imagers, but there is a shortage of remote sensing products
attached with a confidence measure; this is especially true
for the remote sensing of bathymetry. Compared to active
measurements of bottom depth by Sonar or Lidar, the
retrieved Himager is still facing difficulties in its applications
by the broader community, where a key limiting factor until
now is the lack of pixel-wise confidence for the Himager
product.

To fill this void, a prototype confidence score system
(CSS) forH imager is proposed for the first time, which at pres-
ent classifies all pixels in an Himager map of OSW into three
categories: low, medium, and high, with a preliminary set of
criteria. Since this CSS involves both the algorithm coeffi-
cients and the data used for the development of empirical
algorithms, it is logical that not only the algorithm function
andmodel coefficients be reported but also the data pool used
for the algorithm development be deposited in a common
data portal. In the future, while it is always necessary and
important to continue the refinement of these algorithms, it
is also important, and urgent, to develop or revise or refine
such system(s) to measure the confidence of the resulting
Himager pixel by pixel. Specifically, it includes a refinement
of the quality classes, thresholds, and settings of the criteria,
as well as the desired statistical measures. Only the Himager
product of high confidence from multiple images could be
merged to form a reliable map for the broad user communi-
ties. We call on the ocean color community to refine such
schemes or to develop brand-new systems, so a mature and
widely endorsed system could be implemented to clearly
measure the quality of Himager, a critical parallel product of
remotely sensed bathymetry. To reach this goal, it is also
urgent and important to compile, by the community and
for the community, an inclusive data pool of collocated or
concurrent measurements of HLidar and high-quality ρtoa
and Rrs spectra of a wide range of depths and environments.
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With the advancement of Lidar technology, bottom depth (H) of optically shallow waters (OSW) can be measured
accurately with an airborne or space-borne Lidar system (HLidar hereafter), but this data product consists of a
line format, rather than the desired charts or maps, particularly when the Lidar system is on a satellite. Meanwhile,
radiometric measurements from multiband imagers can also be used to infer H (Himager hereafter) of OSW with variable
accuracy, though a map of bottom depth can be obtained. It is logical and advantageous to use the two data sources
from collocated measurements to generate a more accurate bathymetry map of OSW, where usually image-specific
empirical algorithms are developed and applied. Here, after an overview of both the empirical and semianalytical
algorithms for the estimation of H from multiband imagers, we emphasize that the uncertainty of Himager varies
spatially, although it is straightforward to draw regressions between HLidar and radiometric data for the generation
of Himager. Further, we present a prototype system to map the confidence of Himager pixel-wise, which has been
lacking until today in the practices of passive remote sensing of bathymetry. We advocate the generation of a confidence
measure in parallel with Himager, which is important and urgent for broad user communities.
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